The long-term fitness consequences of early environmental conditions

 

(15) bighorns


adam-hayward

Adam Hayward

The conditions which an individual organism experiences during early development have a profound effect on their success in life. For example, poor maternal nutrition may lead to underdeveloped or small offspring, which are likely to have reduced fitness in later life. A host of studies in the lab and field have shown that the quality of environmental conditions (nutrition, population density, climate, predation, infection) during early life are strongly associated with body mass, survival, ageing rates, reproductive success, disease resistance and lifespan.

There are two (non-mutually exclusive) explanations for why early-life conditions influence later performance. First, a non-adaptive explanation: if conditions are good, development is good and the individual is well set-up for a successful life; if conditions are bad, development is sub-optimal in some way and the individual struggles. This is known as the ‘silver spoon’ hypothesis (although The Who would call it the ‘plastic spoon’ hypothesis), and under this scenario, a bad start in life always leads to poor performance in adulthood. Second, an adaptive explanation: the individual senses its environment during development, assumes that it reflects the environment it will encounter later on, and develops in such a way as to maximise its performance under those conditions. Under this scenario, if conditions match during early and later life, no matter how bad those conditions are, individuals will have higher fitness. This is the ‘predictive adaptive response’ hypothesis, and it has been a popular (but controversial) explanation for the origins of metabolic disease in humans.

Few studies have tested for predictive adaptive responses in long-lived wild animal populations, because it’s difficult: such a test requires measurement of environmental conditions in early life, plus measures of both environmental conditions and performance in later life. Gabriel Pigeon and colleagues, from the University of Sherbrooke in Canada, used more than 40 years of data on a bighorn sheep population to test for predictive adaptive responses in a recent paper. They concentrated on female sheep, and asked whether (1) probability of weaning a lamb and (2) probability of survival in a given year were dependent on early-life environmental conditions, current conditions, and an interaction between the two. They tested 12 different environment variables, including population density and a large number of climatic variables (although only density was important, with the hypothesis being that higher density = more competition = poorer nutrition).

They ran a large number of models for both response variables, including linear and non-linear effects of early-life variables and crucially, interactions between early-life and current conditions. They also attempted to separate out within- and between-cohort and –individual effects, which was rather cool, using a really nice approach developed a few years ago. In short, it was pretty thorough.

Population density at birth explained 32% of variation in weaning success: females born in high density years were less able to wean lambs. There was also an interaction with current population density: in high-density years, females were less likely to wean lambs, but this was only true of females who experienced high density around birth themselves. In other words, experiencing poor conditions in early life made individuals less able to deal with poor conditions in early life (Figure a below). However, population density at birth was very weakly (and non-significantly) associated with survival (Figure b below).(15) Pigeon Fig 2

There were some interesting (if rather mind-bending) results concerning how the current population density influenced weaning success, illustrated below (in the SI, where I went digging, so you/other PEGE members don’t have to!). In (a), each line represents the change in weaning success with increasing current density in a given cohort, and the redder the line, the higher the early density was in that cohort. There are between-cohort effects, because the cohorts are responding differently to current density; however, there is no average within-cohort effect, because the average cohort would show a line with a slope of approximately zero. In (b) each line represents an individual. There are between-individual effects, because individuals who experienced higher current density had lower fitness, but there are no within-individual effects, because all individuals responded in a similar manner to increases in density. This suggests the absence of individual plasticity, and that density affects all members of a cohort in a similar way.

(15) Pigeon S1

The main conclusion of the paper is that analyses did not support a predictive adaptive response. This is perhaps not surprising, given similar conclusions in a recent(ish) meta-analysis of experimental studies in plants and (short-lived) animals and even some not-especially-convincing (OK, it’s mine) stuff on humans using data on climate and famines. Predictive adaptive responses are an incredibly intuitive and lovely hypothesis at first glance. I’ve found this when teaching undergraduates: given the question ‘how can low nutrition during gestation lead to diabetes in later life?’, one or two will always come up with the idea of predicting the future environment. Evidence in support of such responses are rare though. An interesting question to ask is ‘how predictive is predictive?’ Do the fitness benefits of developmental plasticity need to arise when you’re halfway through life? Reaching sexual maturity? Surviving to weaning/fledging? Surviving the pre-natal period? All have been suggested, but the best examples of predictive adaptive responses (for me) are very short-term responses: one in voles, and one in humans. Are they predictive or even adaptive? It’s up for debate.

 

Advertisements

Ecosystem restoration strengthens pollination network resilience and function

Kaiser-Bunbury et al. 2017. Ecosystem restoration strengthens pollination network resilience and function. Nature 542,223–227

Figure 1 from the paper. The island of Mahé with study sites and pollination networks (for more details see the paper itself).


Kat Raines

I chose this article as it merges my past and present research areas. I currently work in radioecology, focussing specifically on pollinators in Chernobyl but previously I worked for three years in the Seychelles archipelago on invasive species projects focussing on everything from plants to mammals. I thought this paper looked interesting (although slightly out of my research field) and attempted to answer some of the big questions relating to ecosystem restoration in response to the removal of invasive species.

The aim of this paper by Kaiser-Bunbury et al. is to examine whether ecosystem restoration through the clearing of invasive plant species affects pollination networks. This study was undertaken as a community field experiment on the island of Mahé, Seychelles. The Seychelles archipelago is ideal to conduct invasive species projects as it is relatively isolated from other islands and main land Africa and Mahé offers mid altitude inselbergs as discrete sites from which 8 were selected for this study. Half the inselberg sites were cleared of invasive species and therefore referred to as restored and compared to sites that had not been restored. They found that restoration markedly changed pollinator numbers, behaviour, performance and network structure.

The authors noted that the removal of dense thickets from the restored sites could have had an effect and we wondered exactly how much this would affect pollinator’s ability to even see flowers and whether it was then appropriate comparing sites with dense vegetation to sites with a greater number of clear areas therefore increasing the visibility of flowers.

This study found that interactions in restored networks were more generalised and therefore indicate higher functional redundancy therefore making these networks more robust. This concept was a main point in the discussion for the group as we debated whether it was better to have a high number of specialised pollinators or whether it was better to be more generalised and to what extent this matters on an isolated island with a high number of endemic species. It has been shown that specialist species suffer from habitat loss the most and tend to go extinct first whereas more generalised species are more robust therefore increasing the ecosystem’s resilience. We also wondered if these findings could be extrapolated and applied to other regions and habitats as increased pollinator interaction is obviously a very important outcome for ecosystem restoration.

In conclusion we enjoyed the paper and were impressed with the amount of effort that went into data collection for the plant-pollinator networks. Ecosystem restoration is a powerful tool in conservation but it is relatively unknown what the effects of restoration are on ecosystem functions so this paper is a notable addition to that knowledge base.

Sexual segregation and flexible mating patterns in temperate bats

Angell et al. 2013 Sexual segregation and flexible mating patterns in temperate bats. PloS One. 8(1): e54194.  

Figure 3 from the paper. Posterior distributions for paternity probabilities at the group level. Posterior distributions for the probabilities that fathers (at the group level) came from roosts in the (blue) upper-elevation, (yellow) mid-elevation and (green) low-elevation, and from (red) swarming sites. For (A) low-elevation offspring (the inset graph shows the Wharfedale roost posterior distributions in greater detail), and (B) mid-elevation offspring. 


Following the last two discussions, this week’s paper was selected on the basis that it used non-lethal DNA collection techniques to determine how intra-specific niche separation influences mating patterns.

Matthew Guy

A large number of temperate bat species, including Myotis daubentonii, display sexual segregation along altitudinal gradients. In these species, mating usually occurs during autumn swarming events. However, at the upper limit of the female range, Senior et al. (2005), found evidence of summer mating within roosts where dominant males are tolerated by females. Using the same population of M. daubentonii, this paper extends this work to identify if this is the dominant mating strategy throughout the altitudinal range of the species and, if not, can the differences in mating strategy be explained by foraging habitat quality?

DNA was extracted from wing punches and a novel Bayesian approach was used to assign the probability of parentage of juveniles from low altitudinal roosts to males from different roosting sites and swarming sites. During our discussion, nobody had a lot of experience with the genetic methods used and we found the results section difficult to read. However, the figures clearly demonstrate that the probability that these juveniles are fathered by males from anywhere other than swarming sites is very low. We thought that this was a really nice example of how figures can be used to give a clear overall impression of complex data, especially for the lay person. This result was in contrast to that found by Senior et al. at mid-elevation roosts suggesting a flexible mating strategy over an altitudinal gradient.

Foraging habitat quality was assessed using bat activity, weight and temperature, all of which declined significantly with altitude. The paper surmises that by excluding males from roosts, pregnant and lactating females can reduce intra-specific competition for the high-quality foraging grounds. However, the carrying capacity at intermediate sites is lower and so supports fewer females. In these areas, the thermoregulatory benefits provided by males in the roost outweigh the costs incurred by additional competition. The paper pulls these results together qualitatively, stating that the mating strategy is adapted to the social structure, which, in turn has evolved in response to environmental conditions at a given altitude. However, we felt that an analysis of prevalent mating strategy (i.e. probability juveniles were fathered at swarming events) within individual roosts and local foraging habitat quality together would address the second part of the research question more directly.

Over all, we felt that the paper was well written and, in combination with the Senior et al. paper results, presented an interesting behavioural response. However, the scope of the paper is fairly limited, largely due to a combination of studying a single species and developing ideas of a previous single study. One potential way to widen the papers appeal could have been to incorporate a discussion on how the novel genetic technique developed in this study could be applied to other species populations.

The paper ends by posing the question: Is this flexible mating behaviour capable of dealing with changes in prey distribution and roost microclimate predicted by climate change? Our discussions came to the conclusion that climate change could cause a decrease in the success rate of mating during autumn swarming events, potentially reducing gene flow. An increase in temperature would drive prey species upstream, where the higher proportions of more turbulent water would reduce the quantity and quality of the forging grounds. This could lead to a reduction in females within local nursery roosts making them more reliant on males for roost thermoregulation, and hence, an increase in the prevalence of summer mating. We thought that actually addressing the question, at least to some extent, in the discussion would have made for interesting conclusion and again potentially widen the papers appeal.

Field work ethics in biological research

Gulls_over_a_fishing_trawler_Ste_01

Costello et al. 2016. Field work ethics in biological research. Biological Conservation. 203:268-271.


Birdringingphoto

Eilidh McNab

This week’s journal club, whilst focussed on a single article, was also a chance for the group to have a wider discussion around the ethics of field work.

Historically much natural history research has been undertaken through ‘collecting’ specimens – i.e. killing and preserving individuals. The scientific descriptions of most species on the planet come from ‘type’ specimens held in museums; the individual(s) from which the species is defined and named. Early ornithologists went out birding with shotguns, not binoculars. However, in recent decades this view of biological science has been gradually replaced by non-lethal methods (such as camera-trapping, DNA analysis, radio-tracking, etc.) and the use of fatal collecting methods (certainly amongst vertebrates) is growing increasingly rare (aside from e.g. medical research, which I will not discuss here).

In this week’s paper, Costello et al. (all editors of the journal Biological Conservation, in which the paper is published) confront the ongoing issue of articles submitted to the journal that have, in their view, involved the unnecessary lethal collection of vertebrates, and have therefore been rejected for publication. The three recent examples that the authors discuss involved fish; in two instances researchers employed the use of gill-nets (which often lead to mortality of other non-target species as well), and in another there were very high rates of mortality due to tagging in a capture-release study. Importantly, in all instances the papers were not investigating a novel idea; instead they were simply showing well-understood phenomena in a different location. A table presenting a checklist of considerations for respectful conduct during field sampling highlights this as an important point; any negative impacts must be justifiable in terms of the advancement of scientific knowledge. However, as was pointed out in our debate on this paper, often it is not known what the results may be in advance of a study! Even fairly closely-related species can react very differently, and without first carrying out the field research this can’t necessarily be predicted.

Whilst lethal collecting or increased mortality due to methodology are the main topics, the paper discusses a number of other important issues surrounding field research. One of the first sections highlights the “uneven treatment of species”; and whether the relevant authorities (be they university ethics committees, or government officials) are more likely to allow lethal collection of one taxa over another. They ponder whether the case studies discussed involving fish would have been given permission had it been birds, mammals or reptiles involved – most likely not. This led to some discussion in the group about how much we understand about the way fish react to stimuli; a recent study looked at the use of compounds commonly used to euthanise laboratory zebrafish specimens, which was assumed to slowly send them to sleep. This compound was actually shown to drastically alter their behaviour prior to death, forcing the normally shade-seeking fish out into brightly lit areas of the tank. If this is the behavioural response, can we truly understand how the fish are reacting internally? And is it really as humane as was formerly thought?

Another important topic discussed within the paper was the impacts to non-target species that may result from any programme of fieldwork. This could include trampling (of vegetation or of e.g. invertebrates), or the transfer of invasive plant species or diseases (such as the fungus that causes white-nosed syndrome in North American bats, which has wiped out millions of individuals; the disease may have been inadvertently introduced by European-based cavers or bat ecologists).

The paper finished with a number of different solutions to the issues discussed. This included the use of low-impact methods where at all practicable, such as camera-traps, hair and faeces collection, drones, and observations. They also highlighted the importance of applying the ‘precautionary principle’ to research work, and to consider the possible impacts to the whole ecosystem being studied, not necessarily just the target species.

What is not really discussed in the paper is the perspective of different ‘types’ of researcher; for example a virologist may have a different view of lethal collecting to a conservation biologist. Another point that was brought up during our discussions, but is again not mentioned in the paper, is the cultural significance of certain organisms. Whilst a university ethics board may approve the lethal collection of a species, if it is viewed as particularly important, maybe even sacred, to native peoples in the study area, this should certainly be an important consideration for any researcher.

Whilst the paper is only three pages long, it succinctly covers a range of key considerations when planning any programme of field work. We concluded that this is an important paper to remind scientific researchers not just to fully explore all potential sampling methods before resorting to lethal collecting, but also to consider other potentially negative impacts that could be caused by the study. For example disturbance to other non-target organisms and the spreading of invasive species due to researcher movements should be considered prior to any research work. Whilst there were some comments that the paper may be viewed as a little ‘preaching to the converted’, the fact that multiple papers have been submitted to Biological Conservation that do not meet the ethical standards set by the journal highlights that it is still an important topic to discuss. This importance is highlighted by the fact that this article is one of the most downloaded from the journal in the last 90 days.

Join us this Friday when Matt Guy will lead a discussion on a recent paper in PloS ONE by Angell et al. entitled Sexual Segregation and Flexible Mating Patterns in Temperate Bats.

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054194

External morphology explains the success of biological invasions

fig1

 

Azzurro et al. 2014 External morphology explains the success of biological invasions. Ecology Letters 17: 1455-1463.


zarah

Zarah Pattison

There is rarely a shortage of papers attempting to explain why particular species are more or less invasive than others. Since Charles Elton’s seminar work in 1958 (The Ecology of Invasions by Animals and Plants) there has been a rapid increase, particularly in the last 20 years, in publications surrounding the topic of invasion ecology. The silver bullet to help prevent invasions would be to determine which characteristics contribute most to invasion success and therefore enable us to predict the seriousness of an invasion for prevention and management. Azzuro et al. (2014) offered something a bit unique in their attempt to explain invasiveness by using the external morphology of species, fish species in this instance.

The aim of this study was to explore whether morphological traits could explain the abundance of introduced fish species entering the Mediterranean Sea via the Suez Canal. The Mediterranean Basin is suggested to have a monopoly of vacant niches, which may be contributing to the successful establishment of invasive species therein. Therefore the use of species morphology as a proxy for its ecological status in a community, could explain niche availability and the potential population increase post establishment.

Our initial thoughts were positive. The paper was written well, succinct and enjoyable. A large data set was used in an analysis which none of us had expertise in, but it was still clear what the authors were trying to achieve. (Very) basically a polygon encompassing the morphological space of the native fish community was used and the traits of non-native fish species were plotted across the native morphospace. The results showed that invasive non-native fish species were more abundant either outside or on the outer perimeter of the native morphospace where niche occupancy was low. Non-native species morphologically similar to native species, were less abundant and less likely to establish.

The paper definitely added to the breadth of our invasion ecology knowledge. However, like most studies in invasion ecology, the results are difficult to generalise. Negative caveats of many invasion ecology papers focused on specific species are just that: species specific and not amenable to generalisation. This can be frustrating from a conservation point of view. The authors themselves discussed the limitations of this study particularly in the case of invasive non-native lionfish (Pterois spp.) which has a rather unique morphology. Another point raised was that environmental conditions were not taken into account in this study, particularly fishing quotas which could lead to fluctuating populations regardless of native status. Additionally, life history/functional traits, which are used in many plant invasion studies, were not considered.

Overall the paper delivered its aim, but the title is very confident. Perhaps “External morphology can additionally explain the success of species specific biological invasions” would be more appropriate. However, we can’t test for everything in a study (we all know this!) and we all agreed this was a good piece of interesting science.

Join us next week where Eilidh McNab will lead a discussion of a paper recently published in Biological Conservation entitled: Field work ethics in biological research.

Mycorrhizal status helps explain invasion success of alien plant species

 

pege-mycorrhiza-picture

Menzel et al. 2017 Ecology. Mycorrhizal status helps explain invasion success of alien plant species 98: 92-102.


pictureofme

John Wilson

For my first ever contribution to the PEGE Journal Club (or anywhere) I chose a nicely written article on the importance of mycorrhizal associations to the success of invasive plants. Menzel et al. analysed interactions between the mycorrhizal status and functional traits of 266 plants species and used the geographic distribution as a measure of invasion success. I think we were all quite impressed that this was possible with publicly available data, and some not-too-magical statistics.

The take home message of the study, going by the title, and first line of the discussion, was that mycorrhizal plants are likely to be more successful as invaders. However, since ~90% of plant families are mycorrhizal, is it so surprizing that most invaders are also mycorrhizal? We were also underwhelmed that facultative mycorrhizals plants (FM) seemed to be present in more grid cells. FM plants are free of the constraints on obligate mycorrhizal plants (OM), and may have alternative strategies to choose from, depending on local conditions. These points at first led us to discuss where the interest lay, particularly for a journal like Ecology. Eventually, pushing some slight publication envy aside, we discussed the interactions with plant functional traits. These seem more interesting than the broad statement that plants make fungal associations. It was interesting that rhizomes are particularly associated with FM plant invaders. I was curious whether they are more important to individual plants with a fungal partner or without, or whether the rhizome was also used a storage organ or not made a difference. It perhaps makes sense that plants with a store of carbon could afford to trade with a mycorrhiza, however, no other storage organs showed a similar relationship. The effect of different lifespans was a surprise for us. Discussing this we decided that we might have expected annuals to spread more widely than they apparently have. Also, that variable lifespans increased OM plant success seemed to be an interesting counterpoint to the variable association with fungi for FM plants, perhaps suggesting that having a “choice” between different strategies is useful for invaders adapting to new habitats.

We then wondered whether there was something particularly unique about habitats available in Germany, since Menzel et al. seemed reluctant to suggest a similar pattern would be found outside Germany. Although the data covered only Germany, it seems reasonable to extend the conclusions to other temperate regions, at a minimum to the rest of temperate Europe. We were curious about these limited expectations, since they also mention results from the UK that agreed with their own. However, contradictory results from California seemed to be enough to cause caution in their interpretation.

To finish up, I am now wondering how these results could be used. Perhaps expanding the models to include different combinations of traits, or taking into account factors like propagule pressure would be useful. Alien plants imported into parks or gardens, can co-exist quite peaceably with their neighbours, maybe for 10 or more years, before eventually overstepping their welcome. I don’t know how feasible this would be, but it would be pretty cool if this sort of information was added to the databases and could help identify or monitor potential invasives before they became invasive.

 

Join us next week where Zarah Pattison will lead the discussion of a paper by Azzuro et al. External morphology explains the success of biological invasions.

Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes

seed_dispersal_infocomic_by_sarinasunbeam-da1dyce-png

Cote et al. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography, in press. (Image from http://sarinasunbeam.deviantart.com/art/Seed-Dispersal-Infocomic-606992414)


Lynsey McInnes

Lynsey Bunnefeld

PEGE journal club has morphed into a hybrid in-person/online journal club hosted by the University of Stirling. One half of the PEGE admin has moved to Stirling as a lecturer (me) and is hoping to harness the insights of the department as a whole when discussing matters in the PEGE realm.

We are still straightening out details and may migrate to a new website soon, but in the meantime, a rotating series of bloggers from the Biological & Environmental Sciences department at the University of Stirling will write up a short blog summarising a paper and our discussion every two weeks. As before, we’d be really happy to hear your thoughts on the paper and our interpretation in the comments below. In case you are wondering, Will Pearse is now an assistant prof at Utah State University and we’re even still friends! 

This week, I (Lynsey) chose the paper and committed to writing up our discussion. What follows is my own interpretation of events, apologies if I have misrepresented anything we discussed.

 

I chose a paper by Cote and colleagues from a recent special issue on fragmentation published in Ecography. I was excited about this paper as it promised to integrate three areas of interest of mine: space (fragmentation), intraspecific trait variation (evolving strategies) and species categorisation (dispersal syndromes). However, these grand promises proved problematic. To summarise our discussion: we came out sceptical of the framework proposed by the authors to integrate these three angles; we deemed it infeasible at best and foolish at worse.

Dispersal is a fiendishly difficult phenomenon to get your head around. Do we mean dispersal capacity or propensity? Is a mean or a kernel adequate to categorise the dispersal ‘ability’ of all members of a species? How much intraspecific variation in dispersal ability exists? Is this variance constant? How does it evolve? The authors acknowledge all of these issues and propose to address them head on. They put forward the idea of dispersal syndromes with covarying traits that either enable, enhance or match – the authors thus do not consider dispersal ability as a trait, but rather an emergent feature that comes about as a result of a bunch of possible traits. So far, so interesting.

Where the paper crumbles (for me) is that they go on to overlay the complexity of categorising dispersal syndromes on top of a fragmented landscape. I’m no expert on the process of fragmentation, but I do know it’s a fiendishly complicated topic too. The authors list four ways in which fragmentation modifies a landscape: it reduces habitat quality, increases number of habitat patches, reduces patch size and increases isolation among patches. Each of these four effects are likely to interact with dispersal capacity AND propensity in non-linear ways. And that’s without even considering these effects as selective pressures promoting the evolution of increased or reduced dispersal.

And so we got stuck. We didn’t feel that we have a good grasp (even for a single snapshot of time) of how to adequately characterise dispersal (although we all agreed it was an interesting problem) and so we were hesitant as to the utility of a framework of predicting how dispersal ability (or the traits that covary with it) are likely to interact with or evolve in response to a fragmenting landscape. A pragmatic solution we came up with was to think about holding some variables constant and looking at the evolution of dispersal strategies in those contexts (for example, varying only one of fragmentation’s four effects, not all four).

To conclude, the authors’ aims were admirable, but we were unsure whether we are really in a position to populate their proposed framework at the moment and, even if we were, we were unsure what generalities could emerge: because dispersal ability is a complex phenomenon we were not convinced a framework could be developed that robustly predicts how it might respond and evolve in species found on fragmented landscapes. Are there not too many unknowns and idiosyncracies of species * landscape? Saying that, we would be happy to be proven wrong!

Next week, John Wilson has chosen a recent paper from Ecology by Menzel et al for us to discuss: Mycorrhizal status helps explain invasion success of alien plant species. Join us!

 

A Neutral Theory for Interpreting Correlations between Species and Genetic Diversity in Communities

Laroche et al. The American Naturalist 185(1): 59-69. A Neutral Theory for Interpreting Correlations between Species and Genetic Diversity in Communities

Figure 4 from Laroche et al. The Species-Genetic Diversity Correlation plotted against mutation rate (m) and carrying capacity (K). Personally, I (Will) think it looks a bit like a scene from Interstellar if you squint a little. That's not a comment on the science; I just really enjoyed Interstellar.

Figure 4 from Laroche et al. The Species-Genetic Diversity Correlation plotted against mutation rate (m) and carrying capacity (K). Ignore the white splodges; they’re unimportant for our purposes. Hopefully we’ve just nerd-sniped you into reading the paper!


Lynsey McInnes

Lynsey Bunnefeld

Oh the dangers of picking a paper because you like the keywords and finding them cooked in a different way to you had imagined in your head. I have a slow-burning interest in how thinking about intraspecific variation can help explain interspecific patterns of diversity, turnover, etc, and this paper’s keywords fall right into that gap…

Here, the authors are interested in understanding why you often find, or expect to find, positive correlations between genetic diversity of a focal species and species diversity in the same area (i.e., not quite the same thing). They elegantly explain accepted thinking on the effects of local competition and connectivity and size of sites in a metacommunity as being the factors underlying these expected/often observed patterns.

The paper is concerned with adding the omitted factor of mutation ‘regime’ into the mix. If mutation occurs at the same rate as migration among sites, the expected correlation between genetic and species diversity could break down. I’m not going to lie, the way the authors get to this outcome remains somewhat opaque to me. My general understanding is that when mutation rate is high, the impact of migration among sites is less predictable as there will be a greater variance in what amount of diversity is transferred among sites and this leads to unpredictable knock-on effects on genetic diversity-species diversity patterns. How, you might ask, how indeed?

What I did like about this paper, probably because it harks back to what I liked about the keywords is the incorporation of more actual genetics into the model. Mutation regime is a necessary addition to thinking about genetic diversity and, as the authors rightly point out it is going to be easier (and at the same time much more complicated) to deal with as genomic data pours in. We appear to be on the cusp of understanding how these different levels of diversity impact each other and it’s mega exciting! Models such as this one are pretty awesome, and set the stage for the next step which would be incorporating mutation rate heterogeneity, including at selected loci. Population genetics has the machinery to deal with this variation, we just might need a bit more crosstalk with ecologists and theoretical biologists to get to more refined characterisations of patterns (if there are any) at the macro scale.


Will Pearse

Maybe this is off-topic, but I was dreading reading this paper because these sorts of analyses terrify me. I wasn’t familiar with the ‘ODD model‘ of describing biological models, but the authors use it to such excellent effect that my fears were completely unfounded. If you’re a theoretical person, please use this approach!

This is a paper about within-species diversity (community genetics, not community phylogenetics), and so almost by definition they cannot examine speciation processes. However, I was left wondering how speciation would interact with these dynamics; I assume it’s tricky to model because otherwise a ‘smart’ thing for a genotype to do would be to speciate and thus avoid competition with the genotypes it left behind. Perhaps you’d end up moving to a more coalsecent-esque model in which individuals’ competition strengths are a function of time since coalescence – species identity itself would be something a bit arbitrary. I’m interested because I think there are so many parallels with this model and the more Neutral Theory models (and some of the models of fitness we’ve discussed in the past). I wonder what the dynamics would look like if you just shunted some of these dynamics inside a classic Neutral model.

Presumably this sort of literature applies only to neutral alleles – if there is an allele that confers a selective advantage, then natural selection et al. kick in. Which is where I was wondering how competition steps into this framework – I think it’s at the step where new individuals are drawn (please correct me!), in which case I can see how migration and mutation rates would affect what we find. On another side-note, I particularly liked that the authors had worked sampling into their model – it made it a lot easier to draw this back to what would be expected empirically, and helped the authors make sense of how such empirical results seem to disagree with this model at first. More of this as well, please!

A new dynamic null model for phylogenetic community structure

Pigot & Eitenne 2015 A new dynamic null model for phylogenetic community structure. Ecology Letters 18(2) 153-163

Figure 2 from Pigot & Etienne. Plots of likelihood of community membership under low (top) and high (bottom) rates of local extinction. Or, if you prefer, a series of variously coloured and not-coloured phylogenies.

Figure 2 from Pigot & Etienne. Plots of likelihood of community membership under low (top) and high (bottom) rates of local extinction.


Will Pearse

As if by magic, the ‘new’ approaches I hoped would appear last post have done so. It’s almost as if I know the posting schedule ahead of time!… Alex Pigot and Rampal Etienne have produced an analytical framework within which we can distingush between speciation, extinction, and colonisation in structuring an assemblage’s phylogenetic structure. Beyond that, they have developed a method that uses phylogeny to its true potential: not a proxy but unique data that helps us estimate evolutionary (speciation and extinction) and ecological (migration) processes of interest.

This is an important contribution because the problem of dispersal is one that has vexed many for some time, yet (with notable exceptions) received relatively little attention. Dispersal from a wider source pool provides an important link between ecological and evolutionary time-scales that we need to model. A species ‘appearing’ can either have an evolutionary (speciation) or ecological (dispersal) origin, and that their DAMOCLES model can at least start getting at that distinction is important. It is of little surprise to anyone who has followed these sorts of studies that phylogenetically overdispersed communities can result from something other than competition, but linking its origin to evolutionary and dispersal events outside a community is interesting.

There are, of course, additional complexities that could be built on top of this model, and I’m not going to bore you by rambling on about traits because I think you all know where we want that to be going. However, I think it’s important to explicitly consider the meta-community (or source pool, if you prefer) from which these species are being drawn. Focusing on one assemblage is useful, but the reality is that speciation and extinction dynamics are happening at biogeographic scales, and we desperately need to link community-scale models such as these with those. Considering multiple assemblages undergoing these kinds of dynamics could be a good place to start. I wonder if the limiting factor may be finding something analytically tractable; while simulating individual communities linked within a wider system is reasonably feasible, doing so analytically (as the authors seem to have started doing) is more difficult.


Lynsey McInnes

Lynsey Bunnefeld

Alex Pigot has a way with null models. He’s already shown that the arc of species’ range size over the course of a species’ lifetime is not necessarily the result of deterministic processes and now he (and Rampal Etienne) have shown that common patterns of community assembly need not be the result of negative biotic interactions if an appropriate null model is used. Wow.

This paper is a great example of a couple of key points that I am most definitely guilty of ignoring. 1. taking time to think whether your null model is biologically as well as statistically null is important. 2. important insights can be made even before your model includes every last contributing factor (see Will’s post above). 3. data examples are important to illustrate your method. Nice.

I’m now going to largely disregard all those things I just said were important and wonder how you might extend this model and wonder what pesky real world effects might topple the null expectation.

I wonder how biotic interactions with non-clade members affect community assembly, i.e., competitors, predators, prey, hosts, etc. I wonder what a null model for this might look like? Should hosts/parasites (for example) evolve in tight coevolution, or not? I wonder what repeat processes of community assembly look like? Always the same, or not (I’m sure this has been treated in microcosms and by Gould). How would phylogenies help with these questions? In the same vein, I wonder how what happens to the new sister species that does not enter the community of his ancestor? I guess I am pondering the effects of space. I have no doubt the authors have too, and would not be surprised if they already have the answers up their sleeve. The authors deal elegantly with variation in a quantitative trait (or traits) meant, I think, the characterise niche. I wonder what happens when you throw in variation in other traits, probably dispersal ability (haha, with all the trauma that goes with defining and measuring that!).

Phylogenetic relatedness and the determinants of competitive outcomes

Godoy et al. 2014 Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters 17 (7): 836-844

Figure 3 from Godoy et al. How fitness, demographic, and competitive differences vary with phylogenetic distance.

Figure 3 from Godoy et al. How fitness, demographic, and competitive differences vary with phylogenetic distance.


Will Pearse

In a fantastic follow-up to the many criticisms of the community phylogenetic approach, Godoy et al. fit a form of the Chesson framework to ecological data, and find that while fitness differences are greater among distant relatives, competitive differences are not. Being phylogenetically dissimilar did not mean that species were more likely to co-exist.

This is an excellent demonstration of a point that many have suspected for some time, but few (none?) have been able to conclusively show in a field experiment. This probably has something to do with the work involved in doing it…! Of course, that it’s been found once does not mean it’s a general pattern, but along with other work from the same authors decomposing traits into niche and fitness components, it seems empirical ecology is now matching its theoretical counterpart. Some are going to take papers such as these as the first nails in the coffin of community phylogenetics: personally, I think they open the door to a whole world of new approaches that we’ve been wanting to explore for some time.

Generating hypotheses about the kinds of traits that map onto different kinds of evolutionary processes means we can ask more sophisticated questions about evolutionary ecology. We don’t need to just stop at declaring that a trait shows ‘phylogenetic signal’, we can ask what model of evolution generated these traits, and (more importantly) how the evolution of those traits interacts with how they play out in species’ modern ecology. Indeed, that’s what many community phylogeneticists have been trying to do since the very beginning.

Now we can start asking more nuanced questions about the kinds of evolutionary models we are fitting. Measuring the traits that enable co-existence in one area is fantastic, but it’s unlikely that only the eighteen species in this study evolved in isolation. How did the surrounding flora (and interactions in other environments) affect the evolution of these interaction components? If (as the authors rightly argue) Brownian motion gives us very little predictive power for deeper phylogenetic structure, are there alternative models that might? Is it ever truly possible for competitive interactions and hierarchy to be strongly conserved, if diffuse competition among many competitors is frequent? If competitive hierarchies change over time, does it make sense to ask if a particular snapshot of them, in particular environmental conditions, is evolutionarily stable? Personally, I think it’s a good time to be a community phylogeneticist…


Lynsey McInnes

Lynsey Bunnefeld

Unlike Will, I’m not a community phylogeneticist (still not sure I buy into communities) and haven’t been following the recent developments in community phylogenetics that seem to be making it a much more robust field (see Will’s post above). Instead, I just jumped into this paper without previously ever having thought of the way you could split up species’ differences into stabilising niche- and average fitness- differences. What a good idea and what a shame that distinction wasn’t recognised long ago.

The authors then go on to see if they can untangle how these two features relate to phylogenetic distance using some nifty field experiments with 18 plant species. Again, I got overwhelmed by the fanciness of the experimental design and the work involved in it. And am happy to believe their findings that only average fitness differences show phylogenetic structure (more distant relatives have bigger differences) and that increased variance over longer phylogenetic distances mean that communities as a whole don’t show phylogenetic structure.

Being the macro person I am, I wonder how these results generalise to other communities and how you might go about finding out without having to conduct an epic field experiment every time you want to try. I think these authors have already published theory for these ideas so it is definitely time to get out of the computer and into the community (haha) but just how might you do it? Early community phylogeneticists went to town fitting models to species presence/absence in areas and giant phylogenies, clearly we need to be more nuanced than that. Could we go a roundabout way and find the traits that underlie the average fitness and the stabilising niche differences and use these in a similar framework to Godoy et al. advocate here? Has this been done already?

The authors find that variance increases with increasing phylogenetic distance, does this mean that clear patterns will not be found as we zoom out from narrowly defined communities? Is this OK?

Will sees these developments as a kind of new dawn for community phylogenetics. I just wonder whether the new dawn is not just tearing the field apart in increasingly nuanced ways. I for one am not confident that we can use phylogeny to robustly predict how communities will respond to change or use snapshots of current communities to work out how they got put together. At least not without a lot of knowledge of the system in hand and then who needs these phylogenetic metrics anyway?

%d bloggers like this: